



US 20040115852A1

(19) **United States**

(12) **Patent Application Publication**

Park et al.

(10) **Pub. No.: US 2004/0115852 A1**

(43) **Pub. Date: Jun. 17, 2004**

(54) **METHOD OF MANUFACTURING SUBSTRATE, METHOD OF MANUFACTURING ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE USING THE METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE**

(22) Filed: **Dec. 4, 2003**

(75) Inventors: **Jin-Woo Park, Yongin-city (KR); Ho-Kyoong Chung, Yongin-city (KR); Seung-Yong Song, Kyungki-do (KR)**

(30) **Foreign Application Priority Data**

Dec. 14, 2002 (KR) ..... 2002-80054

**Publication Classification**

(51) **Int. Cl.<sup>7</sup> H01L 21/00; H01L 21/84**

(52) **U.S. Cl. 438/30; 438/149**

Correspondence Address:  
**STAAS & HALSEY LLP**  
**SUITE 700**  
**1201 NEW YORK AVENUE, N.W.**  
**WASHINGTON, DC 20005 (US)**

**(57) ABSTRACT**

(73) Assignee: **Samsung SDI Co., Ltd., Suwon-City (KR)**

(21) Appl. No.: **10/726,667**

A method of manufacturing an organic electroluminescent display device includes preparing an auxiliary substrate, which has a flat side; forming a first protective layer on the auxiliary substrate; forming an organic electroluminescent unit on the first protective layer; bonding a flexible main substrate onto the organic electroluminescent unit; and etching the auxiliary substrate to remove it.

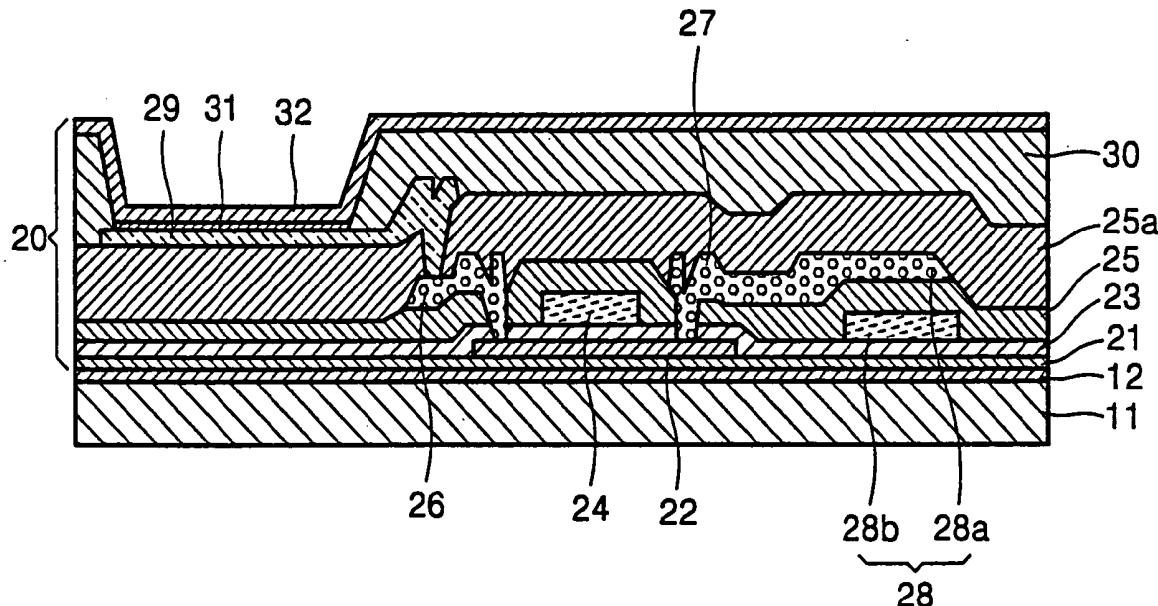



FIG. 1



FIG. 2A

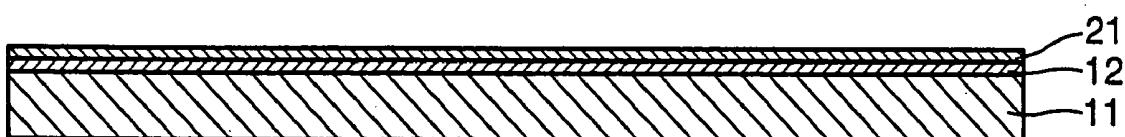



FIG. 2B

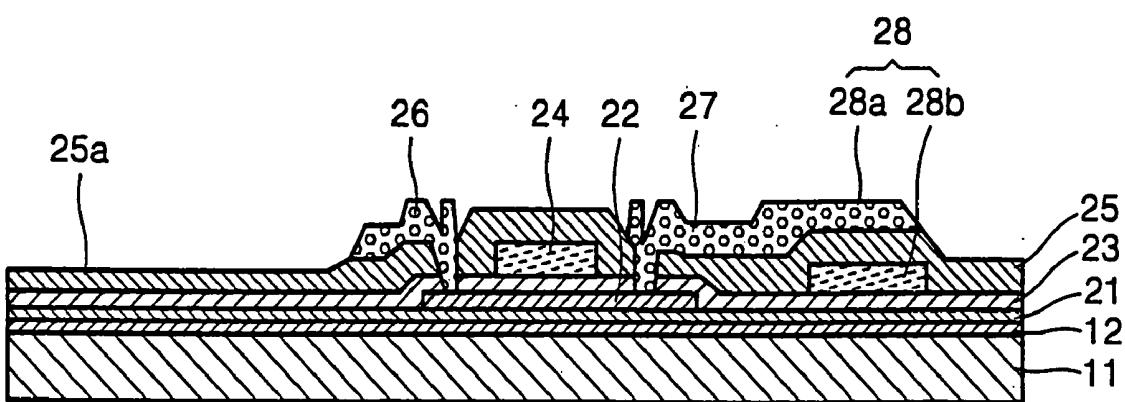



FIG. 2C

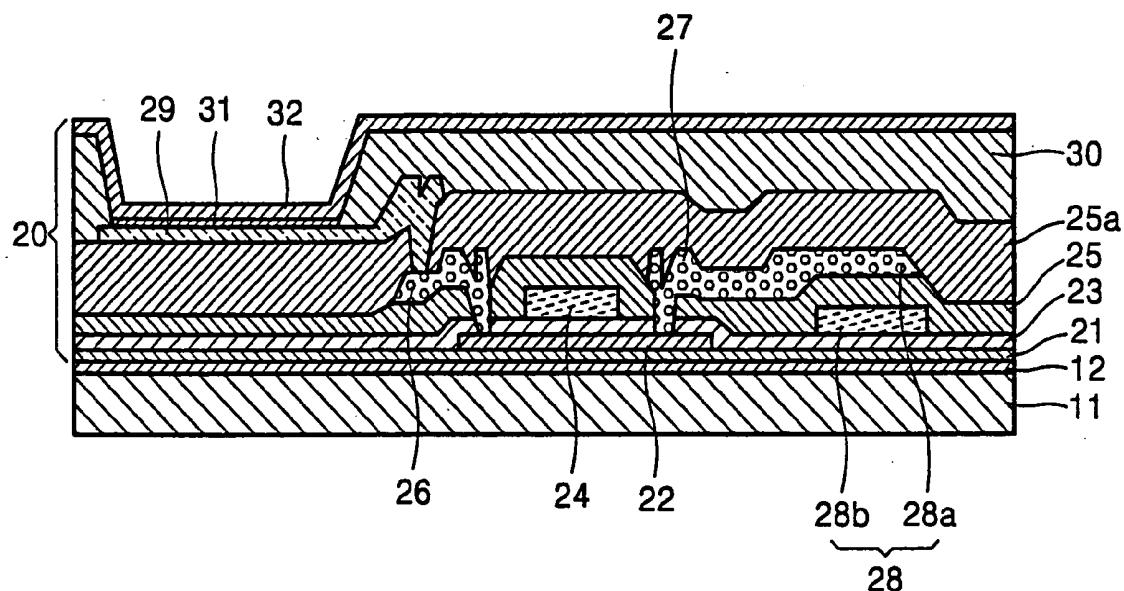



FIG. 3

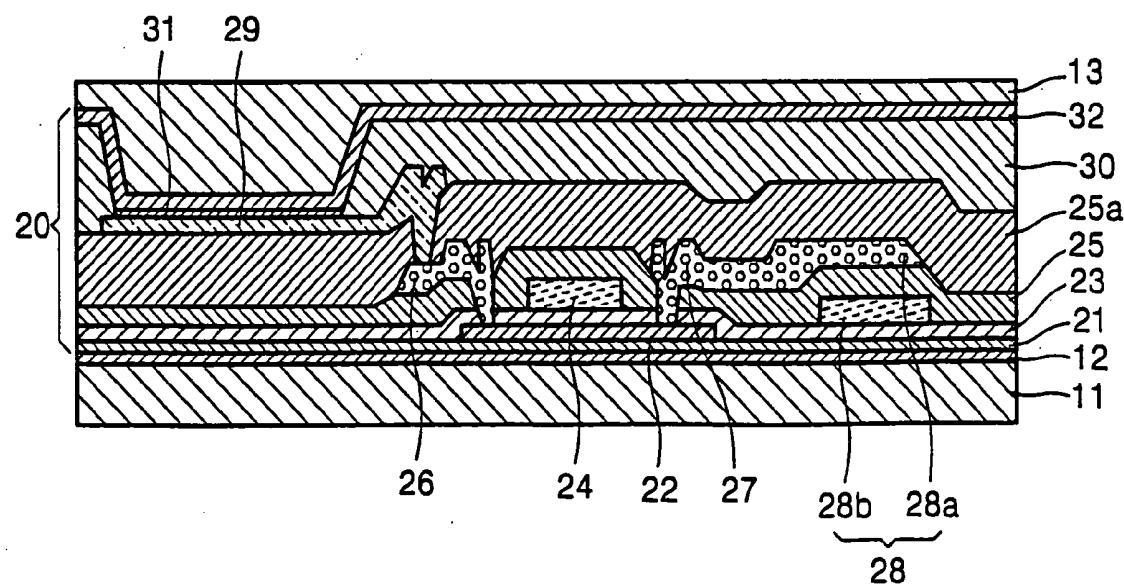



FIG. 4

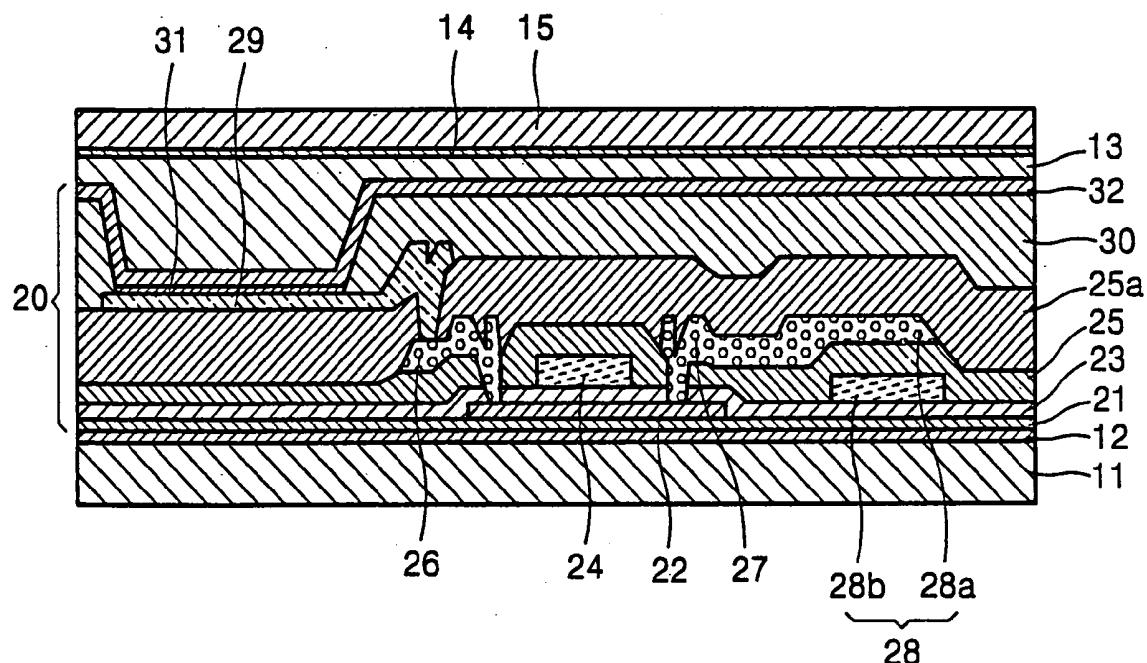



FIG. 5

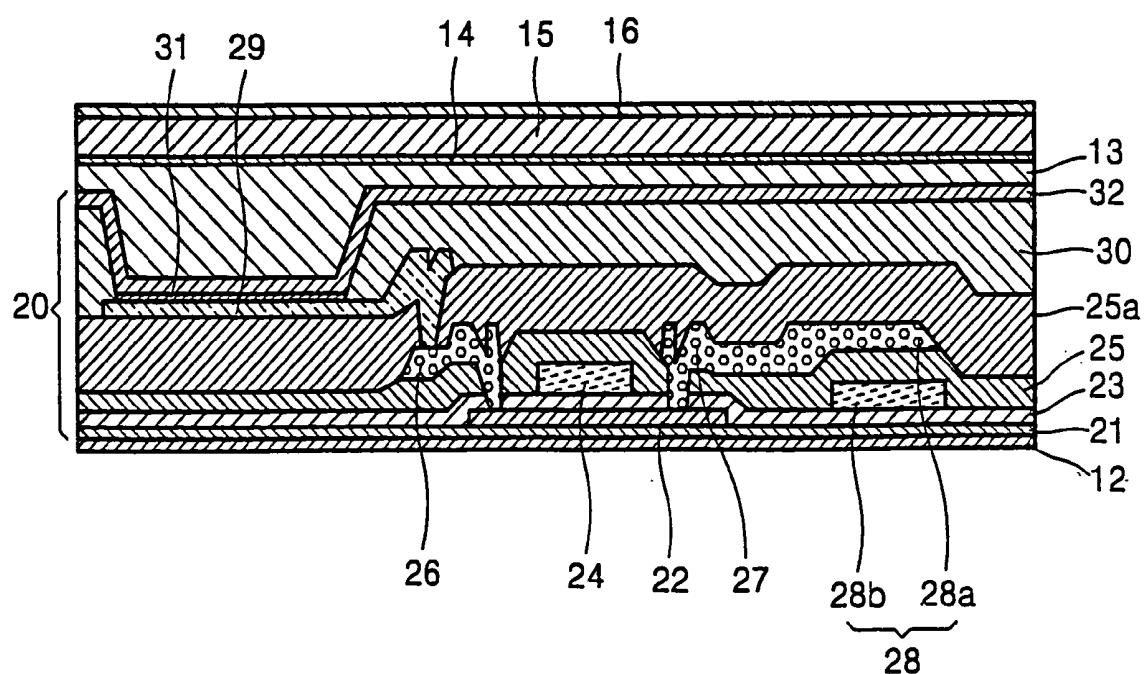



FIG. 6

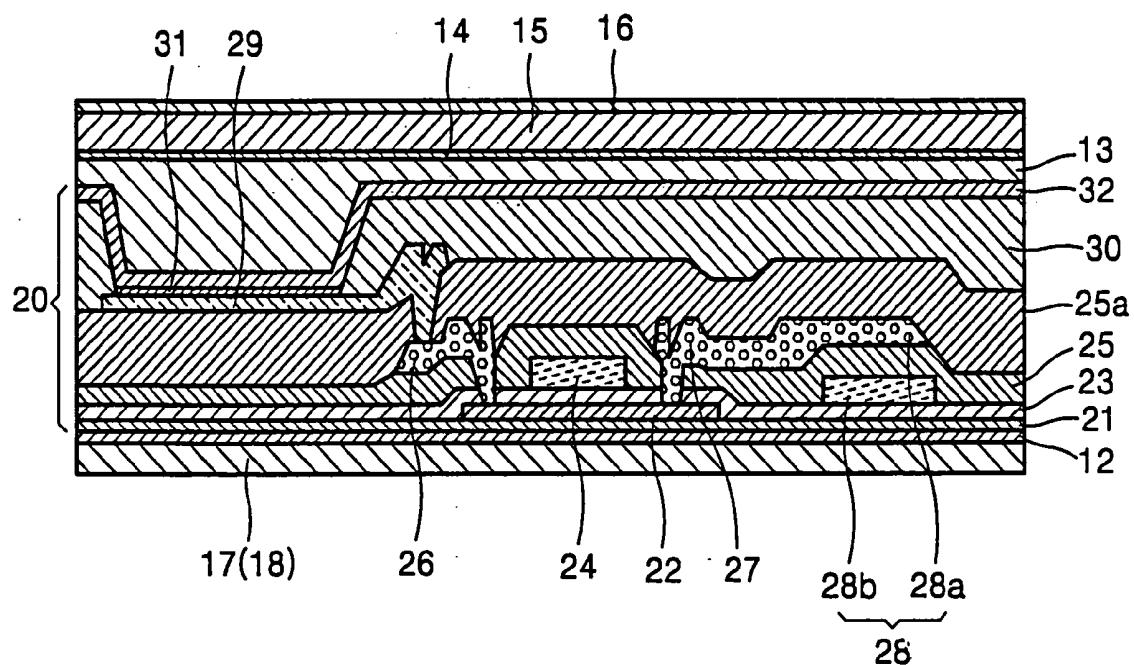



FIG. 7

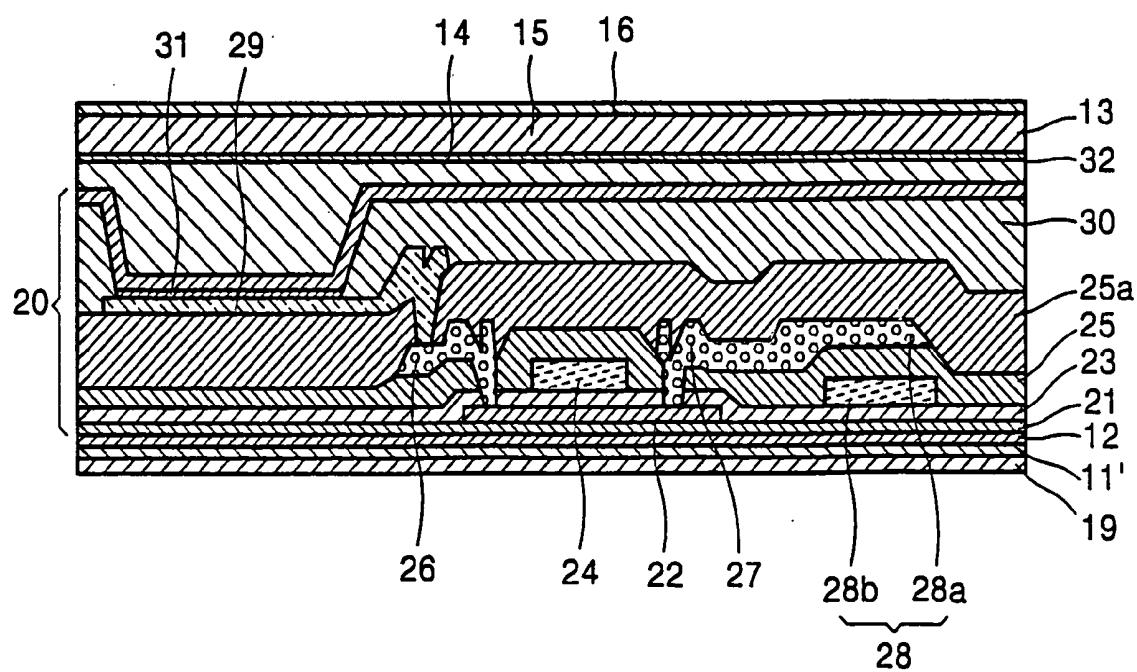



FIG. 8

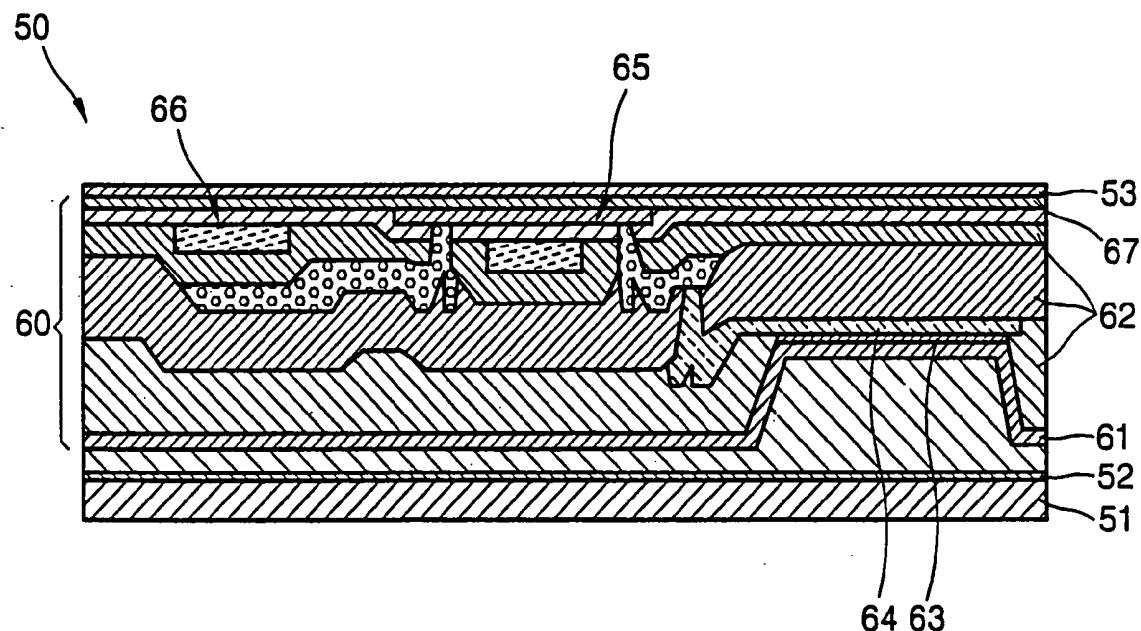



FIG. 9

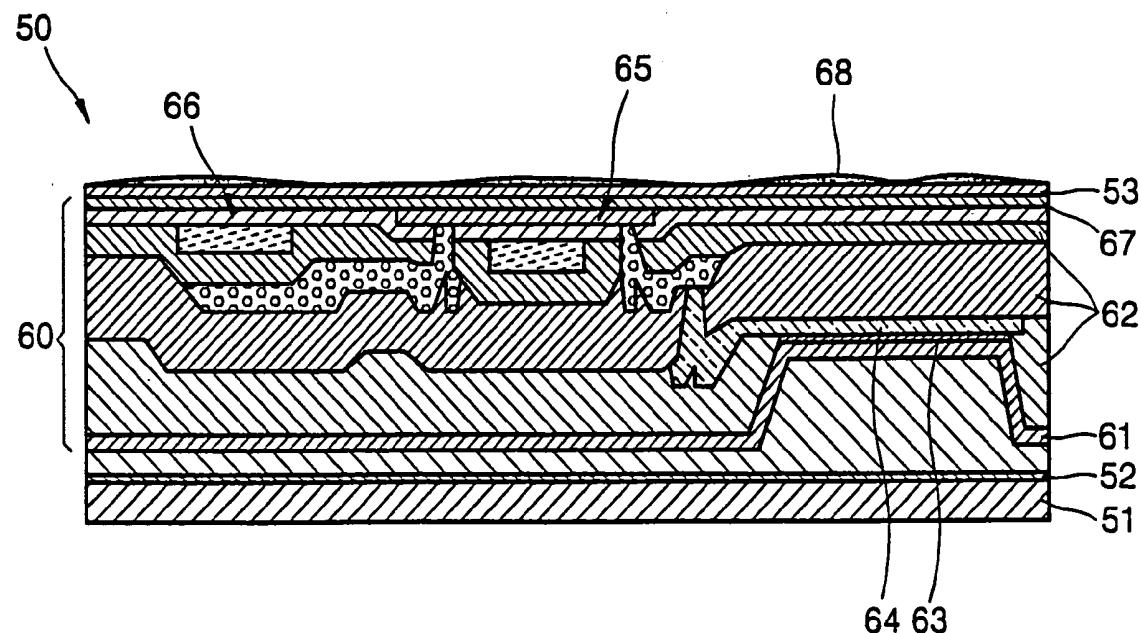
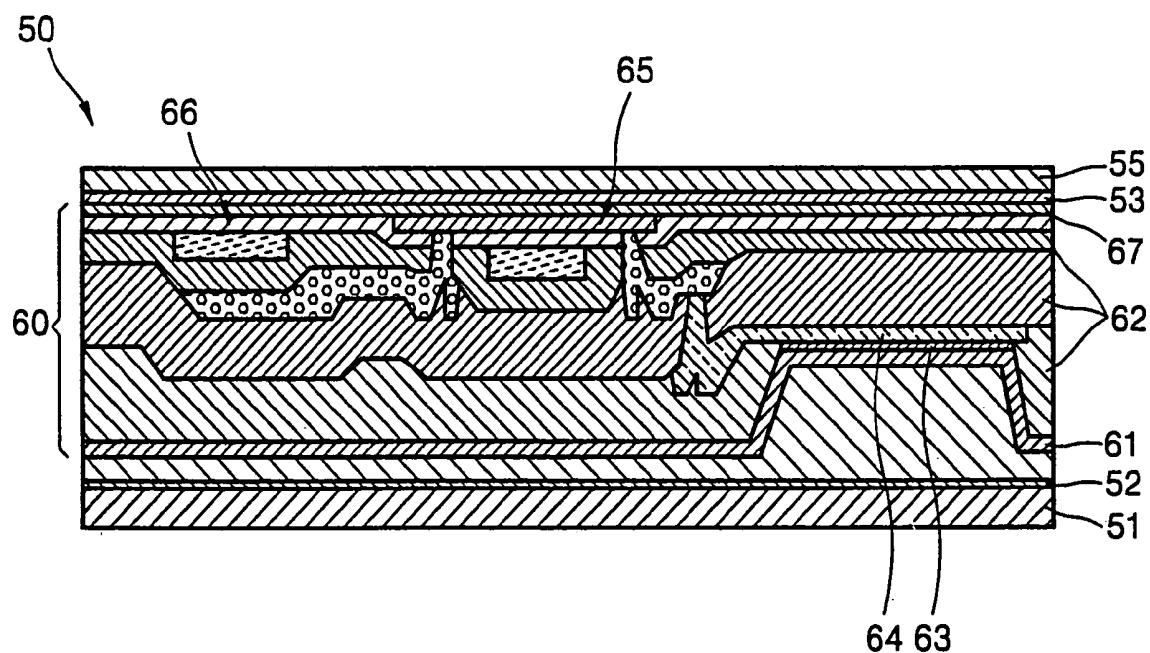




FIG. 10



**METHOD OF MANUFACTURING SUBSTRATE,  
METHOD OF MANUFACTURING ORGANIC  
ELECTROLUMINESCENT DISPLAY DEVICE  
USING THE METHOD, AND ORGANIC  
ELECTROLUMINESCENT DISPLAY DEVICE**

**CROSS-REFERENCE TO RELATED  
APPLICATIONS**

[0001] This application claims the priority of Korean Patent Application No. 2002-80054, filed on Dec. 14, 2002, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.

**BACKGROUND OF THE INVENTION**

[0002] 1. Field of the Invention

[0003] The present invention relates to a method of manufacturing a flexible substrate having a thin film, a method of manufacturing an organic electroluminescent display device using the method, and an organic electroluminescent display device.

[0004] 2. Description of the Related Art

[0005] Flexibilization of flat display devices such as organic electroluminescent display devices and thin-film transistor-liquid crystal display (TFT-LCD) devices has been studied in various ways. In order to make display devices have flexibility, a flexible substrate is used. Such a flexible substrate is usually made of a synthetic resin. However, since flat display devices require complicated processing conditions for forming an organic layer, a TFT layer for driving a display device, an electrode layer, and an oriented layer according to their characteristics, when a substrate made of a synthetic resin is used, the substrate or thin films formed on the substrate may be deformed under the processing conditions.

[0006] To overcome this problem, Japanese Patent Publication No. 2000-123971 discloses a method of manufacturing an organic electroluminescent display device using a substrate made of a moisture-proof film. The organic electroluminescent display device includes two facing insulation substrates, at least one of which has flexibility and at least one of which has light transmissivity. An electrode layer is formed on the inside of each substrate, and an organic layer having a luminescent layer is disposed between the electrode layers. The method of manufacturing this organic electroluminescent display device includes forming an electrode layer and an organic layer on one substrate, forming an electrode layer and an organic layer same as that on the one substrate on the other substrate, and combining the two substrates such that the two organic layers are in close contact with each other.

[0007] In the meantime, Japanese Patent Publication No. hei 9-7763 discloses another method of manufacturing an organic electroluminescent display device. In this method, a transmissive anode layer and an organic thin film are formed on one moisture-proof film, a cathode layer and an organic thin film are formed on another moisture-proof film, and the two moisture-proof films are combined. In order to increase adhesion between the organic thin films, when the two moisture-proof films are combined, a resin layer formed by scattering an organic material on a resin binder is used, and

the two moisture-proof films are pressed at a temperature where the resin binder is softened.

[0008] In the above-described methods, the organic layers are separately formed, and therefore, it is difficult to align the organic layers when the two substrates are combined. Furthermore, adhesion between all of the organic layers formed in predetermined patterns cannot be increased.

[0009] U.S. Pat. No. 6,426,274 discloses a method for making a thin film semiconductor. In this method, porous layers having different porosities are formed on a substrate having a surface layer, and an epitaxial semiconductor film formed on a porous structure is mechanically separated from the substrate using the porous structure.

[0010] In the meantime, U.S. Pat. Nos. 6,326,280; 6,107,213; 5,811,348; 6,194,245; and 6,194,239 disclose a method for manufacturing a thin film semiconductor and a method of separating a device formation layer from a base body.

**SUMMARY OF THE INVENTION**

[0011] The present invention provides a method of manufacturing a substrate by simple processes, thereby increasing productivity.

[0012] The present invention also provides a method of manufacturing an organic electroluminescent display device, in which all processes for manufacturing an organic electroluminescent display device are performed on a non-flexible auxiliary substrate, and then a resulting structure is moved onto a flexible substrate, thereby increasing reliability and yield.

[0013] The present invention also provides an organic electroluminescent display device including a flexible substrate.

[0014] According to an aspect of the present invention, there is provided a method of manufacturing a substrate. The method includes preparing an auxiliary substrate, which has at least one flat side; forming a first protective layer on the auxiliary substrate, the first protective layer being insoluble in a liquid etchant; forming at least one thin-film layer on the first protective layer; bonding a flexible main substrate onto the thin-film layer; and etching the auxiliary substrate to remove it.

[0015] Preferably, the auxiliary substrate is made of glass, and the flexible main substrate is made of a synthetic resin material having flexibility.

[0016] According to another aspect of the present invention, there is provided a method of manufacturing an organic electroluminescent display device. The method includes preparing an auxiliary substrate, which has a flat side and is non-flexible; forming a first protective layer on the auxiliary substrate; forming an organic electroluminescent unit on the first protective layer; bonding a flexible main substrate onto the organic electroluminescent unit; and etching the auxiliary substrate to remove it.

[0017] Preferably, the method further includes forming a second protective layer for planarizing the organic electroluminescent unit to be disposed between the organic electroluminescent unit and the main substrate, before bonding the main substrate. Preferably, the method further includes

forming a third protective layer for protecting the main substrate from a liquid etchant on the main substrate, after bonding the main substrate.

[0018] According to still another aspect of the present invention, there is provided a method of manufacturing an organic electroluminescent display device. The method includes preparing an auxiliary substrate, which has a flat side; forming a first protective layer on the auxiliary substrate; forming an organic electroluminescent unit on the first protective layer; bonding a flexible main substrate onto the organic electroluminescent unit; and etching the auxiliary substrate to have a thickness allowing flexibility.

[0019] According to still another aspect of the present invention, there is provided an organic electroluminescent display device including a main substrate, which has a flat side and is flexible; a second protective layer, which is formed on the main substrate; an organic electroluminescent unit, which is formed on the second protective layer; a first protective layer, which is formed on the organic electroluminescent unit; and a sealing portion, which hermetically seals the organic electroluminescent unit.

[0020] The first protective layer comprises a plurality of layers to prevent permeation of oxygen, moisture, and a liquid etchant. The organic electroluminescent display device further includes a flexible sub-substrate bonded on to the first protective layer, and the sub-substrate is made of a synthetic resin material or glass. Meanwhile, the organic electroluminescent unit includes a second electrode layer, which is formed on the second protective layer; an organic layer, which is formed on the second electrode layer; a first electrode layer, which is formed on the organic layer; and a thin-film transistor layer, which is connected to the first electrode layer penetrating through an insulation layer to drive the first electrode layer. The thin-film transistor is positioned on the second electrode layer far away from the main substrate.

[0021] Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0022] These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:

[0023] FIGS. 1 through 7 are diagrams illustrating stages in a method of manufacturing an organic electroluminescent display device according to an embodiment of the present invention;

[0024] FIG. 8 is a cross-section of an organic electroluminescent display device according to an embodiment of the present invention;

[0025] FIG. 9 shows a state in which a glass substrate partially remains after being etched in an organic electroluminescent display device according to the embodiment of the present invention; and

[0026] FIG. 10 is a cross-section of an organic electroluminescent display device according to another embodiment of the present invention.

#### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0027] Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.

[0028] A method of manufacturing a substrate according to the present invention allows the production of a flexible image display device and minimizes defects occurring when an electrode, a thin-film transistor (TFT), or an organic layer are formed in manufacturing image display devices such as organic electroluminescent display devices.

[0029] In the method of manufacturing a substrate, an auxiliary substrate which is not flexible and has at least one flat side, i.e., a glass substrate, is cleaned and prepared. A first protective layer and at least one functional thin film for forming an image formation device are formed on a top surface of the auxiliary substrate. Then, a flexible main substrate is bonded to a top surface of the functional thin film using an adhesive. A second protective layer may be formed on a surface of the main substrate to prevent the main substrate from being damaged during an etching process. After completion of bonding of the main substrate, the auxiliary substrate is etched and removed.

[0030] FIGS. 1 through 7 are diagrams illustrating a method of manufacturing an organic electroluminescent display device using a method of manufacturing a substrate, according to an embodiment of the present invention.

[0031] As illustrated in FIG. 1, a first protective layer 12, which is insoluble in a liquid etchant such as hydrofluoric acid, hydrochloric acid, or a mixture thereof, is formed on a top surface of a non-flexible auxiliary substrate 11, i.e., a glass substrate. The first protective layer 12 is made of silicon (Si), an inorganic material, or metal to have a thickness of 100-1000 Å. In addition, the first protective layer 12 may be made of a composite layer including multiple thin films in order to prevent permeation of oxygen or moisture.

[0032] As illustrated in FIGS. 2A through 2C, an organic electroluminescent unit 20 is formed on a top surface of the first protective layer 12. The organic electroluminescent unit 20 can be formed as follows.

[0033] As illustrated in FIG. 2A, a buffer layer 21 is formed on the top surface of the first protective layer 12. As shown in FIG. 2B, a P or N type semiconductor layer 22 having a predetermined pattern and a gate insulation layer 23 covering the semiconductor layer 22 are formed on a top surface of the buffer layer 21. A gate electrode layer 24 corresponding to the semiconductor layer 22 and a first insulation layer 25 covering the gate electrode layer 24 are formed on a top surface of the gate insulation layer 23. Next, a TFT layer including a drain electrode 26 and a source electrode 27 is formed on the first insulation layer 25. The drain electrode 26 and the source electrode 27 penetrate the first insulation layer 25 and the gate insulation layer 23 and are electrically connected to opposite sides, respectively, of the semiconductor layer 22. Meanwhile, a first auxiliary electrode 28b is formed on a top surface of the first insulation layer 25 to face a second auxiliary electrode 28a, which

is formed on a top surface of the gate insulation layer **23** during the formation of the gate electrode **24**, thereby forming a capacitor **28**. The second auxiliary electrode **28a** is connected to the source electrode **27**. Next, as illustrated in **FIG. 2C**, a second insulation layer **25a** is formed on the top surface of the first insulation layer **25**. A first electrode layer **29** is formed on a surface of the second insulation layer **25** to be electrically connected to the drain electrode **26**. A third insulation layer **30** is formed on the top surface of the second insulation layer **25a** such that the first electrode layer **29** is exposed. An organic layer **31** is formed on a top surface of the first electrode layer **29** using evaporation or printing. A second electrode layer **32**, i.e., a cathode, is formed on a top surface of the organic layer **31** and the third insulation layer **30**.

[0034] A method of manufacturing the organic electroluminescent unit **20** is not restricted to the above-described embodiment, but various modifications can be made thereto. In other words, the method can be changed according to the structure of the organic electroluminescent unit **20**.

[0035] After the organic electroluminescent unit **20** is completed on the top surface of the first protective layer **11**, as illustrated in **FIG. 3**, a second protective layer **13**, i.e., a passivation layer, having heat resistance, chemistry resistance, and moisture resistance is formed on a top surface of the organic electroluminescent unit **20**. The second protective layer **13** planarizes the top surface of the organic electroluminescent unit **20**. After completing the second protective layer **13**, as shown in **FIG. 4**, a flexible main substrate **15** is bonded onto a top surface of the second protective layer **13** using an adhesive **14**. The flexible main substrate **15** may be made of a synthetic resin or a thin glass. In addition, the flexible main substrate **15** may be made of a composite layer including multiple thin films in order to prevent permeation of oxygen or moisture. In this case, preferably, the main substrate **15** has a thickness of 20-500 nm.

[0036] After the main substrate **15** is bonded, as illustrated in **FIG. 5**, the auxiliary substrate **11** made of a glass substrate is etched and removed. Before the etching process is performed, a third protective layer **16** may be formed on a surface of the flexible main substrate **15** in order to protect the surface of the flexible main substrate **15** from being damaged by a liquid etchant. It is apparent that a structure between the auxiliary substrate **11** and the main substrate **15** is hermetically sealed using a sealing material to prevent permeation of the liquid etchant. Any type of liquid that can etch a glass substrate can be used as the liquid etchant for the auxiliary substrate **11**. Preferably, hydrofluoric acid, hydrochloric acid, or a mixture thereof is used.

[0037] After the auxiliary substrate **11** is completely etched, as illustrated in **FIG. 6**, an organic layer protector may be formed on the first protective layer **12** to protect the organic electroluminescent unit **20**. The organic layer protector may be implemented as an organic protection layer **17** made of a material having heat resistance, chemistry resistance, and moisture resistance or as a flexible sub-substrate **18** made of a synthetic resin or a flexible glass substrate.

[0038] The organic layer protector can be implemented as the sub-substrate **18** made of a flexible glass substrate by remaining as the auxiliary substrate **11** having a thickness allowing flexibility, instead of completely removing the

auxiliary substrate **11**. In this case, as illustrated in **FIG. 7**, an organic protection layer **19** may be formed on an auxiliary substrate **11** remaining after the etching process so as to be used as the organic layer protector.

[0039] According to the above-described method, a flexible organic electroluminescent display device can be manufactured using a substrate made of a flexible synthetic resin material without changing the processing conditions for manufacturing an organic electroluminescent display device.

[0040] **FIG. 8** illustrates an organic electroluminescent display device **50** according to an embodiment of the present invention. The organic electroluminescent display device **50** includes a flexible main substrate **51** having a flat side, a second protective layer **52** formed on a top surface of the main substrate **51**, an organic electroluminescent unit **60** formed on the second protective layer **52**, and a first protective layer **53** formed on a top surface of a buffer layer **67** of the organic electroluminescent unit **60**.

[0041] The main substrate **51** may be made of a flexible synthetic resin material or a glass substrate having a thickness allowing flexibility. Preferably, the main substrate **51** has a thickness of 20-500  $\mu$ m. The main substrate **51** may be formed using an inorganic thin film or a composite thin film including inorganic thin films in order to prevent permeation of oxygen and moisture. As illustrated in **FIG. 9**, after an auxiliary substrate **68** made of a glass material is etched, the auxiliary substrate **68** may partially remain on a top surface of the first protective layer **53**.

[0042] In the organic electroluminescent unit **60**, a second electrode layer **61** used as a cathode is formed on the second protective layer **52**. A first electrode layer **64** corresponding to the second electrode layer **61** is formed on an organic layer **63** formed on the second electrode layer **61**. A TFT layer **65** is formed on a top surface of an insulation layer **62** to be connected to the first electrode layer **64** through an opening formed in the insulation layer **62** in order to drive the first electrode layer **64**. A capacitor layer **66** is formed on the insulation layer **62**. The organic electroluminescent unit **60** has a structure in which the second electrode layer **61** used as a cathode is positioned near the main substrate **51**, and the TFT layer **65** for driving the first electrode layer **64** is positioned above the second electrode layer **61**.

[0043] The first protective layer **53**, which is formed on the top surface of the organic electroluminescent unit **60** in order to prevent permeation of a liquid etchant, may include at least one inorganic protection film, at least one moisture/air proof film, and at least one hydrofluoric acid protection film. Preferably, the first protective layer **53** has a thickness of 50-500  $\text{\AA}$ .

[0044] In the meantime, a flexible sub-substrate **55** may be bonded onto a top surface of the first protective layer **53**, as illustrated in **FIG. 10**. The sub-substrate **55** may be formed of a flexible plastic substrate made of a synthetic resin material or a glass substrate allowing flexibility. When the sub-substrate **55** is made of a flexible synthetic resin material, it may include at least one composite thin film and preferably have a thickness of 20-500  $\mu$ m. When the sub-substrate **55** is made of a glass material, it preferably has a thickness of 20-400  $\mu$ m.

[0045] In an electroluminescent display device having the above-described structure, when a predetermined voltage is

applied to the first electrode layer 64 through a selected TFT and to the second electrode layer 61, holes injected from the first electrode layer 64 meet electrons generated from the second electrode layer 61 in a luminescent layer (not shown) of the organic layer 63, thereby generating exitons. When the exitons make transition from an excited state into a base state, fluorescent molecules in the luminescent layer emit light. The emitted light is output through the transparent first electrode layer 64.

[0046] Since the main substrate 51 is made of a flexible synthetic resin material, the thickness of an organic electroluminescent display device can be greatly reduced, a curvature of an image formation surface can be changed freely, and a scroll display can be implemented.

[0047] As described above, according to the present invention, a flexible organic electroluminescent display device can be manufactured using an auxiliary substrate made of glass without changing the conventional processing conditions for forming a TFT layer and an organic electroluminescent unit. In addition, the present invention uses a main substrate made of a synthetic resin material, i.e., a plastic substrate, thereby implementing an active matrix type organic electroluminescent display device having a high resolution and remarkably reducing the thickness of the display device. In addition, since an organic electroluminescent unit is formed on an auxiliary substrate and then moved onto a flexible substrate, stability of the processes and yield of products can be greatly increased.

[0048] Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

What is claimed is:

1. A method of manufacturing a substrate, the method comprising:

preparing an auxiliary substrate, which has at least one flat side;

forming a first protective layer on the auxiliary substrate, the first protective layer being insoluble in a liquid etchant;

forming at least one thin-film layer on the first protective layer;

bonding a flexible main substrate onto the thin-film layer; and

etching the auxiliary substrate to remove the auxiliary substrate.

2. The method of claim 1, wherein the auxiliary substrate is made of glass, and the flexible main substrate is made of a synthetic resin material having flexibility.

3. A method of manufacturing an organic electroluminescent display device, the method comprising:

preparing an auxiliary substrate, which has a flat side and is non-flexible;

forming a first protective layer on the auxiliary substrate;

forming an organic electroluminescent unit on the first protective layer;

bonding a flexible main substrate onto the organic electroluminescent unit; and

etching the auxiliary substrate to remove the auxiliary substrate.

4. The method of claim 3, further comprising forming a second protective layer for planarizing the organic electroluminescent unit to be disposed between the organic electroluminescent unit and the flexible main substrate, before bonding the flexible main substrate.

5. The method of claim 3, wherein forming the organic electroluminescent unit comprises:

forming a thin-film transistor layer on the first protective layer;

forming a first electrode layer on the first protective layer to be electrically connected to the thin-film transistor layer;

forming an insulation layer such that a predetermined portion of the first electrode layer is exposed;

forming an organic layer on the first electrode layer; and

forming a second electrode layer on the insulation layer exposing the organic layer.

6. The method of claim 3, further comprising forming a third protective layer for protecting the flexible main substrate from a liquid etchant on the flexible main substrate, after bonding the flexible main substrate.

7. The method of claim 3, wherein the etching is performed using a liquid etchant which etches a glass material.

8. The method of claim 7, wherein the liquid etchant is one selected from the group consisting of hydrofluoric acid, hydrochloric acid, and a mixture thereof.

9. The method of claim 3, further comprising forming an organic layer protector, protecting the organic electroluminescent unit, on the first protection layer from which the auxiliary substrate is removed, after etching the auxiliary substrate.

10. A method of manufacturing an organic electroluminescent display device, the method comprising:

preparing an auxiliary substrate, which has a flat side;

forming a first protective layer on the auxiliary substrate;

forming an organic electroluminescent unit on the first protective layer;

bonding a flexible main substrate onto the organic electroluminescent unit; and

etching the auxiliary substrate to have a thickness allowing flexibility.

11. The method of claim 10, wherein the auxiliary substrate is made of glass, and the flexible main substrate is made of a synthetic resin material having flexibility.

12. The method of claim 10, further comprising forming a second protective layer for planarizing the organic electroluminescent unit, to be disposed between the organic electroluminescent unit and the flexible main substrate, before bonding the flexible main substrate.

13. The method of claim 10, wherein forming the organic electroluminescent unit comprises:

forming a thin-film transistor layer on the first protective layer;

forming a first electrode layer on the first protective layer to be electrically connected to the thin-film transistor layer;

forming an insulation layer such that a predetermined portion of the first electrode layer is exposed;

forming an organic layer on the first electrode layer; and

forming a second electrode layer on the insulation layer exposing the organic layer.

**14.** The method of claim 10, further comprising forming a third protective layer protecting the flexible main substrate from a liquid etchant on the flexible main substrate, after bonding the flexible main substrate.

**15.** The method of claim 10, wherein the etching is performed using a liquid etchant which is one selected from the group consisting of hydrofluoric acid, hydrochloric acid, and a mixture thereof.

**16.** The method of claim 10, further comprising forming an organic layer protector protecting the organic electroluminescent unit on the first protection layer from which the auxiliary substrate is removed, after etching the auxiliary substrate.

**17.** An organic electroluminescent display device comprising:

a main substrate, which has a flat side and is flexible;

a second protective layer, which is formed on the main substrate;

an organic electroluminescent unit, which is formed on the second protective layer;

a first protective layer, which is formed on the organic electroluminescent unit; and

a sealing portion, which hermetically seals the organic electroluminescent unit.

**18.** The organic electroluminescent display device of claim 17, wherein the first protective layer comprises a plurality of layers to prevent permeation of oxygen, moisture, and a liquid etchant.

**19.** The organic electroluminescent display device of claim 17, further comprising a flexible sub-substrate bonded on to the first protective layer.

**20.** The organic electroluminescent display device of claim 19, wherein the flexible sub-substrate is made of a synthetic resin material or glass.

**21.** The organic electroluminescent display device of claim 17, wherein the organic electroluminescent unit comprises:

a second electrode layer, which is formed on the second protective layer;

an organic layer, which is formed on the second electrode layer;

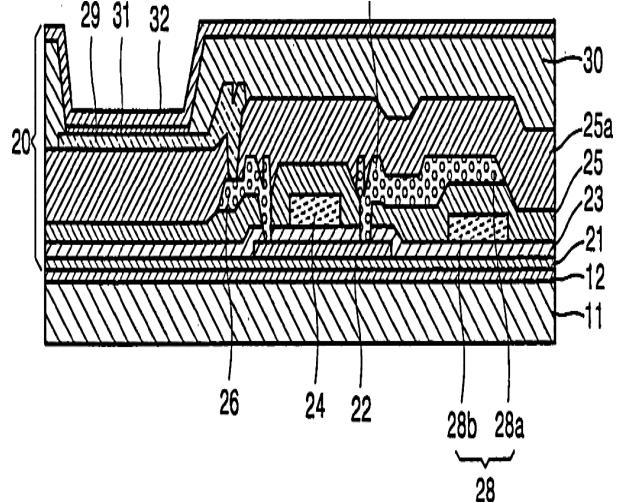
a first electrode layer, which is formed on the organic layer; and

a thin-film transistor layer, which is connected to the first electrode layer penetrating through an insulation layer to drive the first electrode layer.

**22.** The organic electroluminescent display device of claim 21, wherein the thin-film transistor is positioned on the second electrode layer far away from the main substrate.

**23.** The organic electroluminescent display device of claim 19, further comprising an organic protection layer formed on the flexible sub-substrate.

**24.** The organic electroluminescent display device of claim 17, further comprising an organic protection layer formed on the first protective layer.


**25.** The organic electroluminescent display device of claim 17, wherein the main substrate comprises a plurality of layers to prevent permeation of oxygen and moisture.

\* \* \* \* \*

|               |                                                                                                                            |         |            |
|---------------|----------------------------------------------------------------------------------------------------------------------------|---------|------------|
| 专利名称(译)       | 制造基板的方法，使用该方法制造有机电致发光显示装置的方法，以及有机电致发光显示装置                                                                                  |         |            |
| 公开(公告)号       | <a href="#">US20040115852A1</a>                                                                                            | 公开(公告)日 | 2004-06-17 |
| 申请号           | US10/726667                                                                                                                | 申请日     | 2003-12-04 |
| 申请(专利权)人(译)   | 三星SDI CO. , LTD.                                                                                                           |         |            |
| 当前申请(专利权)人(译) | 三星DISPLAY CO. , LTD.                                                                                                       |         |            |
| [标]发明人        | PARK JIN WOO<br>CHUNG HO KYOON<br>SONG SEUNG YONG                                                                          |         |            |
| 发明人           | PARK, JIN-WOO<br>CHUNG, HO-KYOON<br>SONG, SEUNG-YONG                                                                       |         |            |
| IPC分类号        | H05B33/10 H01L21/77 H01L21/84 H01L27/12 H01L27/32 H01L51/56 H01L21/00                                                      |         |            |
| CPC分类号        | H01L27/1214 H01L27/1266 H01L27/3244 H01L51/524 Y10S438/977 H01L51/56 H01L2227/326<br>H01L2251/5338 H01L51/5253 H01L27/1218 |         |            |
| 优先权           | 1020020080054 2002-12-14 KR                                                                                                |         |            |
| 其他公开文献        | US7049161                                                                                                                  |         |            |
| 外部链接          | <a href="#">Espacenet</a> <a href="#">USPTO</a>                                                                            |         |            |

## 摘要(译)

一种制造有机电致发光显示装置的方法，包括制备具有平坦侧面的辅助基板;在辅助基板上形成第一保护层;在第一保护层上形成有机电致发光单元;将柔性主基板粘合到有机电致发光单元上;并蚀刻辅助基板以将其移除。

